Helicon wave produced plasmas for electric propulsion

Jim Gilland
Ohio Aerospace Institute/
NASA Glenn Research Center/
University of Wisconsin-Madison

A dvanced Space Propulsion Workshop

Huntsville A L

A pril 4, 2001

Outline

- Review of Helicon Wave Sources
 - Dispersion
 - Thruster concepts
- Recent Phaedrus helicon experimental results
 - Experimental goals
 - Experimental apparatus
 - Dual Antenna results

Helicon wave dispersion and plasma density

Approximate helicon dispersion relation for |m|

$$\frac{B}{n_e} \approx \frac{\textit{m}_0 e}{3.83} \left(\frac{\textit{w}}{k_z}\right)$$
 B = Applied Field, n_e = density, a = plasma radius, 3.83 = zero of Bessel function J₀

- Dispersion indicates the capability for wave propagation at high n_e
- Sources with n_e up to 10²⁰ m⁻³, T_e ~ 3 eV have been created at rf power ~ 1 kW, a ~ 2 cm (P. Zhu and R. Boswell, Phys. Rev. Lett. 63 (26) 1989)
- High density requires (pick one or more):
 - High B₀ Raises lower hybrid frequency
 - Small radius plasma confinement issues
 - Low ω Approach lower hybrid frequency
 - High k does not match peak ionization cross section for plasma creation

Helicon wave thruster concepts

- Compact ion or plasma source
 - 1cm radius to replace hollow cathode
 - Small radius -> high density
 - 10²⁰ m⁻³ achieved at 1
 kG, kW of power in long tube, radius 1 cm
 - Short tube for thruster applications is a departure from long laboratory sources

- ECR thruster
 - Generate helicon wave in chamber
 - $T_{\perp} = T_{\parallel} \sim 3 \text{ eV}$, high ionization
 - Isotropic T_e reduces plasma losses due to Bohm diffusion (D~ T_(^?)/B)
 - Expand magnetic field outside of chamber to ECR region
 - Continued magnetic expansion past ECR region to accelerate exhaust

Experiment to increase helicon density

- Use two antennae with different wavelength spectra
 - First longer antenna (steady state) starts plasma
 - Second shorter antenna (pulsed) couples with higher density portion of dispersion
- Use higher power (pulsed) to overcome particle balance issues
 - Neutral pumping still an issue

The Phaedrus helicon experiment

Initial Pulsed Results

Second antenna pulse increases density

Pulsed high power results in broader, denser plasma

Peak density reaches asymptote in pressure, power

Pressure affects steady state density most

Summary

- Second antenna can provide ~ factor of 2 increase in helicon density
- Particle balance (neutral pumping) appears to limit duration of density increase
- Impacts on thruster designs:
 - Sufficient propellant flow to maintain ionization
 - Conflict between plasma start up (long antenna)
 and high density operation (short antenna)